Transcriptional control of oligodendrogenesis.
نویسندگان
چکیده
Oligodendrocytes (OGs) assemble the myelin sheath around axons in the central nervous system. Specification of cells into the OG lineage is largely the result of interplay between bone morphogenetic protein, sonic hedgehog and Notch signaling pathways, which regulate expression of transcription factors (TFs) dictating spatial and temporal aspects of oligodendrogenesis. Many of these TFs and others then direct OG development through to a mature myelinating OG. Here we describe signaling pathways and TFs that are inductive, inhibitory, and/or permissive to OG specification and maturation. We develop a basic transcriptional network and identify similarities and differences between regulation of oligodendrogenesis in the spinal cord and brain.
منابع مشابه
Early stages of oligodendrocyte development in the embryonic murine spinal cord proceed normally in the absence of Hoxa2.
Recent discoveries have enhanced our knowledge of the transcriptional control of oligodendrocyte (OG) development. In particular, the transcription factors (TFs) Olig2, Pax6, and Nkx2.2 have been shown to be important in the specification and/or maturation of the OG lineage. Although numerous other TFs are expressed by OGs, little is known regarding their role(s) in oligodendrogenesis. One such...
متن کاملAscl1/Mash1 promotes brain oligodendrogenesis during myelination and remyelination.
Oligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes. We h...
متن کاملTGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1.
Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodend...
متن کاملBrain Regeneration in vitro and in vivo studies of exercise-related effects on brain plasticity
Neural stem and progenitor cells in the germinal regions of the adult brain, such as the hippocampus, are of great interest, because they provide the possibility for enhanced brain plasticity or can contribute to endogenous cell replacement after injury or disease. Voluntary exercise was recently shown to robustly induce cellular and structural plasticity, thereby contributing to overall brain ...
متن کاملMicroglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone.
Although microglia have long been considered as brain resident immune cells, increasing evidence suggests that they also have physiological roles in the development of the normal CNS. In this study, we found large numbers of activated microglia in the forebrain subventricular zone (SVZ) of the rat from P1 to P10. Pharmacological suppression of the activation, which produces a decrease in levels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glia
دوره 55 13 شماره
صفحات -
تاریخ انتشار 2007